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Feasibility Study of Constant Eddy-Viscosity Assumption
in Gradient-Based Design Optimization

Chang Sung Kim,* Chongam Kim," and Oh Hyun Rho*
Seoul National University, Seoul 151-742, Republic of Korea

A feasibility study is carried out by investigating the effects of a usual assumption of constant turbulent eddy
viscosity on the aerodynamic design using an adjoint variable method, one of the most efficient gradient-based
optimization techniques. Accurate unsteady and steady flow analyses are followed by the aerodynamic sensitivity
analysis for the Navier-Stokes equations coupled with two-equation turbulence models. A challengeable approach
for high-lift design optimization at higher angles of attack is also proposed, which is based on unsteady sensitivity
analysis using a dual time-stepping method and the chimera overset grid scheme. Through the comparison of the
sensitivity gradients with respect to all of the design variables including angle of attack, it is observed that the
constant turbulent eddy-viscosity assumption might provide inaccurate gradients in sensitivity analyses such as
transonic airfoil with a strong shock and high-lift airfoil at a high angle of attack close to stall angle. Simultaneously,
however, the final design results indicate that both approaches are acceptable in engineering applications. Both the
single- and multi-element airfoil design optimizations using the constant eddy-viscosity assumption are carefully
assessed in terms of design accuracy, computer memory overheads, and total design time in various design examples.

Introduction

S computational power advances, design optimization tools

using computational fluid dynamics (CFD) have gradually
played an important role in aerodynamic design process. Among
advanced optimization techniques, the gradient-based optimization
method has been widely used and applied even to multidisciplinary
design optimization(MDO). In general, a gradient-baseddesign op-
timization requires two steps. The first is to obtain the search direc-
tion that defines the change of design variables for design improve-
ment. The second s, so called one-dimensional search, to determine
the movement of design variablesin the search direction. This basic
process is repeated until it approaches to an optimal shape.

In one-dimensional search an accurate and efficient flow solver
is indispensable for the computation of pressure distribution and
aerodynamic load coefficients such as lift, drag, and pitching mo-
ment, which are used in an objective function to be either mini-
mized or maximized. Especially for high-liftdesign optimization, it
is known that the unsteady, time-accurate computation is required
for the accurate computation of the flow over a high-liftdevice at a
higher angle of attack close to stall angle where massive flow sep-
aration might occur.! So far, most of previous studies on high-lift
design optimization using the Navier—Stokes equations were based
on steady-state computations?®> With regard to this aspect, one of
the major interests in the present study is an application of the un-
steady approach proposed here to high-lift design optimization to
demonstrateits capabilitynot only to delay stall phenomenabut also
to improve maximum lift performance.

In determining the search direction, the gradients of design
variables were traditionally calculated by the finite difference
method. It is, however, too expensive to compute the flowfield
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iteratively with incremented values of a design variable for com-
plex two-dimensional or three-dimensional problems. In addition,
this method is so sensitive to the step size of a design variable that
it sometimes provides inaccurate signs or sensitivity derivatives*
Therefore, more robust techniques have been proposed using direct
differentiation methods and adjoint variable methods.*~!* Direct
differentiation methods provide computed derivatives, which are
coincident with finite differenced derivatives, and are useful when
the number of design variable is smaller than that of the objec-
tive function and constraints. On the other hand, adjoint variable
methods are more advantageous for their capability to compute the
gradientsof the objective function and constraints when the number
of design variable is much larger than that of the objective function
and constraints. Adjoint variable methods adopt the formulation of
the gradient in either a discrete or a continuous approach. In the
discrete approach, which is used in the present work, discretized
governing equations are differentiated with respect to design vari-
ables, whereas adjoint equations are first differentiated and then
discretized in the continuous approach.!®!!

It is required to incorporate the effect of turbulence as accurately
as possible in differentiating the governing equations to deal with
critical flows involving strong shocks and flow separations, such
as transonic flows with a strong shock and high-angle-of-attack
flows close to stall. Itis, however, difficult to fully hand differentiate
the governingequationsincluding the viscous terms and turbulence
terms. Some software tools such as automatic differentiatior® 1> are
used for the Navier—Stokes equationswith a turbulencemodel. How-
ever, this approachis generally less efficient, in terms of computing
time and memory overhead, than hand-differentiationcodes.®!* In
the present work the Navier-Stokes equations coupled with two-
equation turbulence models are fully differentiatedby human hand.
Because the k — w supersonic transport (SST) model'*!> shows a
better prediction for stall phenomena among popular two-equation
turbulence models, the K — @ SST model is mainly used and then
compared with the original k — » model'®!” and the standard k — &
model.!® Like the mean flow equations, the turbulence model equa-
tions are also hand differentiated to compute accurately the sensi-
tivity derivatives of flow quantities with respect to design variables.

Adjoint variable methods with a usual assumption of constant
turbulent eddy-viscosity assumption have been applied to actual
aerodynamicdesign optimizations.!®!! Also the accuracy of this as-
sumption was reportedin Refs. 4 and 5. An aerodynamic sensitivity
analysis for the Navier—Stokes equationscoupled with two-equation
turbulence models was performed on the chimera overlaid grids in
Ref. 5, which presents the effects of the constant eddy viscosity
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assumptionon sensitivity gradients with respectto several geometric
and flow design variables. In the present study all of the design vari-
ables thatare actually imposed on design optimization are examined
using the CSAAV2D code.’ In addition, both transonic and high-lift
design optimizations using the constant eddy-viscosity assumption
are rigorouslyassessedin terms of design accuracy,computer mem-
ory requirements, and total design time in various design examples:
subsonic and transonic designs for drag minimization and lift max-
imization and high-lift designs for lift-to-drag-ratio maximization
and even Cl,, improvement. Especially in the high-lift design op-
timization, for the accurate computation of the flow at higher angles
of attack very close to stall both flow analysis and sensitivity anal-
ysis are performed in an unsteady, time-accurate mode by adopting
the dual time-stepping method.

Numerical Background

Flow Analysis

The compressible flow analysis Navier—Stokes solver
(CFANS2D), which has been well verified in many applica-
tions,">18 is used for the computation of turbulent viscous flows
over single- and multi-elementairfoils. The governingequationsare
the two-dimensional, unsteady, compressible Navier—Stokes equa-
tions coupled with two-equation turbulence models: the k —w SST
model,'*" the k — w model,'>'” and the standard k — & model.”
The governingequationsare transformedin generalizedcoordinates
and are solved with a finite volume method. Using a backward Euler
implicit method and the dual time-stepping method, the governing
equations are discretized in time and linearized in delta form as

n+1l,m
1 oR aS
— —_ A n+1m+ 1
|:JA1'+(8Q+8Q) } ¢

— _{Rx +S}n+l.m — _Rn+1.m
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Sn+1 — Q JQ Q (1)
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where J is the Jacobian of transformation, T and superscript m
represent pseudotime while ¢ and n for physical time. R, and S are
the residual of the steady-state flow equations and unsteady source-
like term, respectively. @ is the six-element vector of conservative
variables (p, pu, pv, pE, pk, pw)T.

For the calculation of the residual, convective terms are upwind
differencedbased onRoe’s flux-difference-splitting(FDS) scheme!®
and viscous terms are central-differenced. A MUSCL (monotone
upstream-centered scheme for conservationlaws) approach using a
third-order interpolation is used to obtain a higher order of spatial
accuracy?’ The third order of spatial accuracy is kept in all calcula-
tions. For a temporal integration the LU-SGS scheme by Yoon and
Colleagues’!**? is adopted to efficiently solve Eq. (1). Wall bound-
ary conditions are applied explicitly with the nonslip condition. For
inflow and outflow boundaries characteristic conditions based on
one-dimensional Riemann invariants are imposed. For the chimera
grid scheme a bilinearinterpolationthat was known to be robust and
easy to implement is adopted for the hole-cutting boundary."!8

Unsteady Sensitivity Analysis

In this section an unsteady sensitivity analysis method based on
an unsteady, time-accurate flow analysis is presented. The discrete
residual of the unsteady flow equations derived in Eq. (1) can be
written as

{R} = (R} + (S} = R(Q, X, D} = {0} @
where X is the computational grid position and D is the vector of
design variables. Similarly, the vector of the aerodynamic objective

function F' to be either minimized or maximized is also dependent
on @, X, and D as

{F} ={F(Q.X.D)} 3)

Sensitivity derivatives of the aerodynamic functions are calcu-
lated by directly differentiating Eqs. (2) and (3) with respect to D
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In the adjoint-variable (AV) method the sensitivity derivatives of
the aerodynamic functions are obtained by combining Eqgs. (4) and
(5) as

(5] - 5] {381 {5 )+ (5]
(i) R lw) dw)) o

where A represents the six-element adjoint vector of Lagrangian
multipliers (A1, A2, A3, A4, As, Ag)T corresponding to the conserva-
tive variables (o, pu, pv, pE, pk, pw)T. The geometric sensitiv-
ity vector {dX/dD} can be calculated by differentiating the grid-
generationcode. In the present work finite difference approximation
is applied for simplicity. Rearranging Eq. (6) yields the following
equation:
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Without evaluating the vector {dQ/dD}, the sensitivity derivatives
of the aerodynamic functions can be calculated as

-2 (513
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if and only if the arbitrary vector A satisfies the following adjoint
equation:
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To obtain the solution vector A in Eq. (9), the backward Euler
implicit method with pseudotime marching is used as

T
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For efficient calculation of [dR,/0Q]", the residual vector
[0R,/0Q]" is differentiated by the primitive variable vector @, =
(p,u, v, w, p, k,w)" rather thanby the conservative variable vector
Q. Introducing the transformation matrix M = 0Q/9Q,,, the trans-
posed flux Jacobian can be calculated by
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00,
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The inverse transformation matrix in transposed form is given as

[ (y — D{u*+v?%} ]
Lo—u/p —v/p ————— —k/p —w/p
0 1/p 0 —(y — Du 0 0
MY=10 o0 1/p —(y — o 0 0
0 0 0 =1 0 0
0 0 0 0 1/p 0
0 0 0 0 0 1/p |
(12)

For steady-state computations unsteady time terms in the preced-
ing equations can be vanished by setting the physical time step At
to infinity. Boundary conditions in the AV methods are given from
Eq. (9) as

aRx ! 1.51 aRIB g oF B
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where subscript B represents boundary cells.
For the chimera grid scheme a bilinear interpolation is adopted
for the hole-cuttingboundary. These boundary conditions also need

to be carefully treated. The discrete residuals at the fringe cells of
the main grid and the subgrid can be written as

Ry} = (RN} +{sy)={R} (0}, @*)} =10} (140)
[Ri} = (RS} + {83} =[R}(Q5.0")} =10}  (14b)

where the subscript F' represents fringe cells and the superscripts
M and S represent the main grid and subgrid domain, respectively.
Then the equations for boundary conditions at fringe cells can be
derived from the Eqs. (9) and (14) as
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In the step of an unsteady sensitivity analysis, the main diffi-
culty lies in the differentiationof a one- or two-equation turbulence
model because of complicated terms such as turbulence produc-
tion and dissipation terms. To reduce the effort to differentiate the
turbulence transport equations, the turbulent eddy viscosity pur is
usually assumed to be constantin the adjoint variable methods.!*!!
That is, the derivatives of pr with respect to the conservative vari-
ables Q are set to zero. Because dur/dQ is a very large banded
matrix of six conservative variables at eight node cells as shown in
Fig. 1, it requires quite an amount of computer memory. The con-
stant eddy-viscosity assumption saves computing time as well as
memory overhead by avoiding the need to solve the differentiated
turbulenceequations. This assumption, however, might not guaran-
tee the required accuracy of the derivatives because it neglects the
contribution of the turbulence model to the flow analysis,*> which
can directly influence on the design of optimal aerodynamic shape.
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Fig. 1 Grid cells required for dz.7/dQ calculation.
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Fig. 2 Surface-pressure coefficients over the RAE 2822 airfoil at
a=2.79 deg, M =0.73,and Re =6.5 x 105.

Results and Discussion

Flow Analysis

Both single- and multi-element airfoils are tested for the vali-
dation of the parallelized CFANS2D flow solver.! For the case of
single airfoil, the transonic flow over the Royal Aircraft Establish-
ment (RAE) 2822 airfoil is computed at a Mach number of 0.73, a
Reynolds number of 6.5 x 10°, and an angle of attack 2.79 deg. A
129 x 65 hyperbolic grid is used with the wall spacing of 1 x 1073
chord. The computed surface pressure coefficients from the flow
solver using the k — @ SST model'*!3 are compared with those
from the kK — w model,'>"” the standard k — ¢ model,"> and the ex-
perimental data? in Fig. 2.

In case of multi-element airfoil, the flow over the National
Aerospace Laboratory (NLR) 7301 airfoil with a 32%c flap is tested
at a Mach number of 0.185, a Reynolds number of 2.51 x 10°, and
an angle of attack of 13.1 deg. The flap is positioned with a deflec-
tion angle of 20 deg, an overhang of 5.3%c, and a gap of 2.6%c.
A 249x81 hyperbolic grid for the basic airfoil and a 125 x 41 grid
for the flap are used with the wall spacing on the order of 10~°
chordin a chimera overlaid grid system. For accurate prediction for
higher angles of attack over 13.1 deg, computations are performed
in a time-accurate, unsteady manner using the dual time-stepping
method as already verified in the previous study.! The computed
surface-pressurecoefficients using two-equation turbulence models
are compared with the experimental data** in Fig. 3. Three com-
puted results from different turbulence models show quite a good
agreement with experiments. Figure 4 shows lift coefficients at the
wide range of angles of attack from zero to maximum lift. Over-
all, the computed result using the k — w SST model yields slightly
higher predictionsof lift coefficient. Especially, the capability of the
presentflow solver to predict the stall angle of 14.1 deg precisely is
noted, which is crucial in finding Cl,,,, during the actual high-lift
design optimization.
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Fig. 3 Surface-pressure coefficients over the NLR 7301 airfoil with
flap at o =13.1 deg, M = 0.185, and Re =2.51 x 10°.
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Fig. 4 Lift coefficient vs angle of attack for the NLR 7301 airfoil with
flap.

Effects on Sensitivity Analysis

To examine the effects of constanteddy viscosity (CEV) assump-
tion more closely than the previous study,’ all of the sensitivity gra-
dients of design variables computed from the CEV assumption are
compared with those from the variable eddy viscosity (VEV) as-
sumption for three different flow regimes: subsonic and transonic
turbulent flows over the RAE 2822 airfoil and a low-speed turbu-
lent flow over the NLR 7301 with flap at a high angle of attack
close to stall angle. In addition, sensitivity gradients of an objective
function with respect to design variables computed from the k — w
SST model are compared with those from the k — w model and the
standard k — ¢ model to study the effects of turbulence model under
the CEV assumption.

Transonic Airfoil with a Strong Shock

To examine the effects of shock discontinuity on sensitivity gradi-
ents, the RAE 2822 transonic airfoil is tested at a Reynolds number
of 6.5 x 10°, an angle of attack of 2.79 deg, and a freestream Mach
number of 0.73, where a strong shock wave appears on the upper
airfoil surface. The objective is to maximize lift coefficient. Angle
of attack o is given as a flow design variable, and 20 geometric
design variables are also given on both the upper and lower airfoil
surfaces using 10 Hicks—Henne functions? respectively. Figure 5
shows clearly thatthe CEV assumptioncanlead to seriousdeviations
in obtaining the sensitivity gradients of lift coefficient in turbulent
flows involving a strong shock. For the design variable of angle of
attack, the deviationreachesup to about 50%, and the maximum de-
viation is as much as 250% for geometric design variables. Because
the gradient of flow quantities on the upper airfoil surface is much
larger than the lower surface, the CEV assumption shows quite a
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Fig. 5 Convergence of sensitivity gradients of lift coefficient at
M =0.73: k — w SST model.
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Fig. 6 Sensitivity gradients of lift coefficient at M = 0.73: k — € model.
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Fig. 7 Sensitivity gradients of lift coefficient at M =0.73: k — w model.

differencemostly on the upper surface. The third order of magnitude
of the initial residual is enough for the convergence criteria in both
the AV codes with/without the CEV assumption. However, for the
purposeof careful comparison,the convergencecriterionis set to the
fourth order of magnitude of the initial residual in all computations.

Effects of Turbulence Models

Three different two-equation turbulence models are tested to ex-
amine the effects of turbulence models on sensitivity gradients.
Much like the k — @ SST model, the standard kK — ¢ and the k — w
model also show a similar behavior in predicting sensitivity gradi-
ents as shown in Figs. 6 and 7. It is known that the CEV assumption
might yield inaccurate sensitivity gradients because it neglects the
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very large value of the turbulent eddy-viscosity derivative, espe-
cially in the downstream adverse pressure gradient region after the
shock wave, which directly affects the variation of aerodynamic
load coefficients*> However, this issue on the CEV assumption is
still considered moot in actual design applications.

Subsonic Turbulent Airfoil

In this case the RAE 2822 airfoil is tested again at a freestream
Mach number of 0.63, a Reynolds number of 6.5 x 10°, and an
angle of attack of 2.79 deg, where a strong shock does not appear
on the airfoil surface. The objective is to maximize lift to drag ratio
C;/C,. Sensitivity gradients with the CEV assumption show a little
differencefrom the complete AV code of VEV assumption,as shown
in Fig. 8. For geometric design variables the maximum deviation of
51% occurs near suction peak on the upper surface, whereas the
deviation is less than 2% for the design variable of angle of attack.
Contrary to the transoniccase involving a strong shock, the AV code
with the CEV assumption shows very mild deviations.

Multi-Element Airfoil Close to Stall

To demonstrate the capability of the AV code to treat com-
plex geometry, the flow over the NLR 7301 airfoil with a 32%c
flap is tested on a chimera overlaid grid at a Mach number of
0.185, a Reynolds number of 2.51 x 10°, and an angle of attack of
13.1 deg, which is very close to the stall angle of 14.1 deg. As men-
tioned earlier, the flow information is previously obtained from un-
steady computationsin a time-accurate manner using the dual time-
stepping method. Sensitivity gradients of lift coefficient with
respect to angle of attack and geometric changes of the main airfoil
and flap are compared in Fig. 9. For the design variable of angle of
attack, the deviationis 40%, and the maximum deviationsreach up
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Fig. 8 Sensitivity gradients of lift to drag ratio at M =0.63: k — w SST
model.
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Fig. 9 Sensitivity gradients of lift coefficient at M =0.185: NLR 7301
airfoil with flap.

Table1 Comparison of computing time
and memory requirement

Design VEV CEV
Single
CPU time 1.0 0.61
Memory 1.0 0.36
Multi
CPU time 1.0 0.57
Memory 1.0 0.35
0
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Fig. 10 Comparison of convergence histories.

to 43 and 20% on the upper surfaces of the main airfoil and flap,
respectively.

Computing Time and Memory Requirements

The convergenceproperty of the AV code with the VEV assump-
tion is roughly the same as that of the AV code with the CEV as-
sumption as shown in Fig. 10. Even though residual histories are
shown up to over seventh order of magnitude of the initial residual,
the third or fourth order of magnitude is enough for the convergence
criterion of sensitivity analysis in actual design examples. Comput-
ing time and memory requirements of the AV code with the CEV
assumption are compared to those of the AV code with the VEV
assumptionin Table 1. The CEV assumptionreduces the CPU time
and computer memory overheads by about 40 and 65%, respec-
tively. In an engineering sense it would be considerably efficient to
implement this assumptioninto actual design optimizationif design
results are acceptable, which will be examined in the next design
examples.

Effects on Transonic Design Optimization

The two-dimensional compressible flow analysis Navier—Stokes
(CFANS2D) solver! and two-dimensional compressible sensitivity
analysis adjoint variables (CSAAV2D) code’® are used for single
airfoil design optimization according to the design procedure in
Fig. 11. Optimization is performed using the Broydon-Fletcher—
Goldfarb—Shanno (BFGS) variable metric method supported by the
Design Optimization Tool (DOT) commercial software2® Twenty
geometric design variables are given on the upper and lower airfoil
surfaces.

To examine the effects of the CEV assumption on shock dis-
continuity, the RAE 2822 transonic airfoil is chosen as a baseline
model and tested at two different Mach numbers of 0.73 and 0.63,
respectively with/without a strong shock wave. In all design exam-
ples convergencecriteria for the flow solver and sensitivity analysis
code are set to the fourth and third order of magnitude of the initial
residual, respectively.
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Fig. 11 Flowchart of a gradient-based design optimization.
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Fig. 12 Drag minimization with lift constraint for single airfoil at
M=0.73.

Drag Minimization with Lift Constraint

The RAE 2822 transonic airfoil is adopted as a baseline model
and redesigned at a Mach number of 0.73, a Reynolds number of
6.5 x 10%, and a fixed angle of attack of 2.79 deg. The objective of
the first example is to minimize drag coefficient with lift constraint.
To performthe sensitivity analysisto obtain lift and drag coefficients
simultaneously, the objective function to be minimized is given by
the following equation:

F=Cd+wx max(Cl — Cly, 0.0) (16)

where Cl, is the target lift coefficient and w is a weighting value.
The initial and designed surface pressure coefficients are compared
in Fig. 12. After 14 design iterations the drag coefficient is re-
duced from 0.01876 to 0.01341 keeping the target lift coefficient
at a threshold value of 0.8 as shown in Fig. 13. Even though it
might be defined arbitrarily by a designer’s choice, the same de-
sign convergence criterion is imposed fairly on both the VEV and
CEV design examples. The VEV design case calls the flow solver
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Fig. 13 Design progress of drag minimization with lift constraint at
M=0.73.
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Fig. 14 Sensitivity gradients for drag minimization with lift
constraint.

66 times and the sensitivity analysis code 14 times, whereas the
CEV design case calls the flow solver 117 times and the sensitivity
analysis code 27 times. The CEV design case requires much more
design iterations because of the accuracy problem in determining a
search direction. However, recalling that the AV code with the CEV
assumption yields quite a differencein determining gradients of lift
coefficient from the AV code with the VEV assumption as already
seen in Fig. 5, it is interesting that the designed drag coefficient
using the CEV assumption yields just 2% higher value than that of
the VEV design case. This can be explained by the facts that the
gradients of the drag coefficient computed from the CEV assump-
tion produce a relatively smaller deviations compared to the case
of the lift coefficient as shown in Figs. 5 and 14 and that a shock
wave representing nonlinearity in transonic flows has disappeared
after the seconddesigniteration. The shock wave causing wave drag
on the initial airfoil is disappeared on the final designed airfoil as
shown in Fig. 15.

Shock-Wave Clearance

The effects of the CEV assumption on subsonic design with-
out a shock wave are examined by analyzing the flows around the
RAE 2822 airfoil as a baseline airfoil at a Mach number of 0.63,
a Reynolds number of 6.5 x 10, and a fixed angle of attack of
2.79 deg. The objective is to maximize the lift-to-dragratio, which
is simply given by

F=cCl/Cd (17)

The designed surface-pressure coefficients and design progress
are shown in Figs. 16 and 17. The VEV design improves the lift-to-
drag ratio from 57.22 to 64.73 after three design iterations, calling
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a) Initial airfoil
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b) Design airfoil

Fig. 15 Comparison of isopressure contours before and after design.
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77777 Initial
Design
f e - Design (u,' = 0)

Fig. 16 Lift-to-drag maximization for single airfoil at M = 0.63.

the flow solver21 times and the sensitivity analysis code three times.
On the other hand, the CEV design ends only after two design it-
erations with no further advance. Though the CEV design yields
some difference in the distribution of upper surface-pressure coef-
ficients, which is expected from the result of sensitivity gradients
of lift to drag ratio in Fig. 10, the optimal value of the objective
function agrees well with each other. Thus, it seems to be feasible
to apply the CEV assumption to subsonic design optimization at a
lower angle of attack.

o
8 -
Q [ ]l o
3065 -5
ST
- | 0.013
06 7 A
W 0.012
z,
055 ] ' 3

Design iteration

Fig. 17 Design progress of lift-to-drag maximization at M = 0.63.

in: Initial
a=13.1°
in: Design
a=14.17°
in : Design (u,’' = 0)
o=14.03°

Fig. 18 Improvement of Cly,x for multi-element airfoil.

Effects on High-Lift Design Optimization

The essence of high-lift design optimization is undoubtedly to
improve Cl,,,x by modifying geometric parameters on each element
and by changing the angle of attack as well. In actual high-lift de-
sign applications the enhancement of the maximum lift coefficient
can cause undesirablelift-to-dragratios at off-design conditions. In
the present study, however, high-lift design examples are restricted
to the optimal landing and takeoff configuration at high angles of
attack close to the stall angle. For further realistic high-lift design
optimization multipointdesign optimization would be performed as
a future work.

To validate the present design topology based on unsteady sen-
sitivity analysis and chimera overset grid scheme, the NLR 7301
airfoil with flap is tested as a baseline model at a Mach number of
0.185, a Reynolds number of 2.51 x 10°, and an angle of attack of
13.1 deg. Among total 44 design variables, a flow design variable of
angle of attack and 43 geometric variables are given: 20 design vari-
ables on the surfaces of the basic airfoil and flap, respectively, and
three geometric changes of flap deflection angle, overlap, and gap.
For the accurate prediction of the flowfield very close to stall dur-
ing the one-dimensional search, flow computations are performed
in a time-accurate, unsteady manner using the dual time-stepping
method. The effects of the CEV assumption on the multi-element
airfoildesignoptimizationare examinedin both cases of landingand
takeoff configurationsat higher angles of attacks close to stall angle.

Maximum-Lift Landing Configuration
The objective of the first example is to maximize the lift coeffi-
cient at the floating angle of attack. Thus, the angle of attack is also
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Fig. 19 Design progress of Cly,x improvement for multi-element
airfoil.

b) Attached flow after design
Fig. 20 Comparison of streamlines over high-lift airfoil with flap.

included as a design variable. The objective function to be maxi-
mizedis givenby Eq. (17). The initial and designed surface-pressure
coefficients are compared in Fig. 18. For the design case using the
AV code with the VEV assumption, the angle of attack is changed
from13.1to 14.17deg, whereasitischangedto 14.03deginthe CEV
design case. Figure 19 shows that the lift coefficients increase from
3.2982t0 3.83991in the VEV design case and to 3.8171 in the CEV
design, respectively. The VEV design calls the flow solver 29 times
and the sensitivity analysis code four times, whereas the CEV design
calls the flow solver 43 times and the sensitivity analysis code seven
times. For a fair comparison the same design convergencecriterion
is implicitly imposed on both the VEV and CEV design examples.
Even though the CEV design requires more design iterations than
the VEV design because of the inaccurate information of search
direction from the CEV assumption, the designed results show
pretty much same configurationsin an engineering sense. Figure 20
shows an improvement of Cl,, by avoiding a massive-separated
flow over a high-lift airfoil using the present design optimization
tool.

Takeoff Configuration

The objective of the second example is to maximize the lift-to-
drag ratio at a fixed angle of attack of 13.1 deg, where the objective
function to be maximized is the lift to drag ratio itself as given in
Eq. (17). The distribution of initial and designed surface-pressure
coefficients is shown in Fig. 21. After two design iterations the
lift-to-drag ratio from the VEV design is increased from 42.35 to
48.39 as in Fig. 22. Likewise, the CEV design shows an improved
lift-to-dragratio of 48.23. Because the initial geometry is originally
optimized for takeoffconfiguration, a noticeableimprovementis not

AND RHO 1175
Table2 Comparison of total design optimization time
Airfoil Design Flow solver AV code Total
Single VEV 66 x 1.0 14x 4.8 133.2
CEV 117x 1.0 27%x29 195.3
Multi VEV 29x 1.0 4x20 37.0
CEV 43x1.0 7x1.2 51.4
14 -
[
12!
————— Main: Initial
oy e Flap
Main: Design
Y Flap
I —-—Main: Design (u,' = 0)
& ol R - Flap

Fig. 21 Lift-to-drag maximization for multi-element airfoil.

0.082

Cd

0.074

0.066

Design iteration

Fig. 22 Design progress of lift-to-drag maximizationfor multi-element
airfoil.

obtained. The high-lift design with the VEV assumption calls flow
solver 17 times and sensitivity analysis code two times, whereas the
CEV design calls flow solver 29 times and sensitivity analysis code
four times.

Total Design Optimization Time

With the same convergencecriteria for the flow solver and sensi-
tivity analysiscode, total computationalcost for design optimization
with the CEV assumptionis compared to the case of the VEV design
by the unit of a flow solver running time as in Table 2. In case of
transonic design with a strong shock, the AV code with the VEV
assumption takes 4.8 times more than the flow solver, whereas the
AV code with the CEV assumption requires 2.9 times. For the drag
minimization of a transonic airfoil with the AV code with the VEV
assumption, there are 66 flow solver calls and 14 sensitivity code
calls, which corresponds to 133 flow solver calls in total. In case
of the CEV design, total 195 flow solver calls are required, which
results in 45% increase in net computational cost compared to the
VEV design case.
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In high-lift optimization with the VEV assumption for the Cly,,
improvement, there are 29 flow solver calls and four AV code calls,
which correspondsto total 37 flow solver calls. Much like the tran-
sonic design, the high-liftdesign with the CEV assumptionrequires
about 40% more computing time than the VEV design case. The
increase of total computing time in the CEV design is mainly at-
tributed to inaccuracy in determining search direction.

Despite extra computational cost, it seams to be feasible to apply
the CEV assumption to actual design applications in general be-
cause the design examples using this assumption essentially show
comparable results to those of the VEV design.

Conclusions

The effects of a usual assumption of constant turbulent eddy vis-
cosity in an adjoint method on aerodynamic design are carefully
investigatedin the presentstudy. Accurate steady and unsteady flow
analyses are followed by the aerodynamic sensitivity analysis for
the Navier—Stokes equations coupled with two-equation turbulence
models. For high-lift design optimization at higher angles of attack
close to stall, both the flow analysis and sensitivity analysis are
performed in an unsteady mode by adopting a dual time-stepping
method. The present design tool composed of the unsteady flow
solver and the unsteady sensitivity analysis code demonstrates its
competency for high-lift design optimization. Through the sensitiv-
ity analyses before the actual design process, it is noticed that the
CEV assumption can cause inaccurate gradients in the design of the
transonic airfoil with a strong shock wave and the multi-element
airfoil at a higher angle of attack close to stall. However, the CEV
design generally shows a minor difference in obtaining an optimal
value of the objective function compared with the VEV design.
Therefore, it seems to be feasible to apply this assumption to actual
design applications, even to critical problems such as the transonic
design with a strong shock wave and the high-lift design at high
angles of attack.
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