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A feasibility study is carried out by investigating the effects of a usual assumption of constant turbulent eddy
viscosity on the aerodynamic design using an adjoint variable method, one of the most ef� cient gradient-based
optimization techniques. Accurate unsteady and steady � ow analyses are followed by the aerodynamic sensitivity
analysis for the Navier–Stokes equations coupled with two-equation turbulence models. A challengeable approach
for high-lift design optimization at higher angles of attack is also proposed, which is based on unsteady sensitivity
analysis using a dual time-stepping method and the chimera overset grid scheme. Through the comparison of the
sensitivity gradients with respect to all of the design variables including angle of attack, it is observed that the
constant turbulent eddy-viscosity assumption might provide inaccurate gradients in sensitivity analyses such as
transonic airfoil with a strong shock and high-lift airfoil at a high angle of attack close to stall angle. Simultaneously,
however, the � nal design results indicate that both approaches are acceptable in engineering applications.Both the
single- and multi-element airfoil design optimizations using the constant eddy-viscosity assumption are carefully
assessed in terms ofdesign accuracy, computermemory overheads,andtotaldesign time invariousdesignexamples.

Introduction

A S computational power advances, design optimization tools
using computational � uid dynamics (CFD) have gradually

played an important role in aerodynamic design process. Among
advanced optimization techniques, the gradient-basedoptimization
method has been widely used and applied even to multidisciplinary
design optimization(MDO). In general,a gradient-baseddesign op-
timization requires two steps. The � rst is to obtain the search direc-
tion that de� nes the change of design variables for design improve-
ment. The second is, so called one-dimensionalsearch, to determine
the movement of design variables in the search direction.This basic
process is repeated until it approaches to an optimal shape.

In one-dimensional search an accurate and ef� cient � ow solver
is indispensable for the computation of pressure distribution and
aerodynamic load coef� cients such as lift, drag, and pitching mo-
ment, which are used in an objective function to be either mini-
mized or maximized. Especially for high-lift design optimization, it
is known that the unsteady, time-accurate computation is required
for the accurate computation of the � ow over a high-lift device at a
higher angle of attack close to stall angle where massive � ow sep-
aration might occur.1 So far, most of previous studies on high-lift
design optimization using the Navier–Stokes equations were based
on steady-state computations.2;3 With regard to this aspect, one of
the major interests in the present study is an application of the un-
steady approach proposed here to high-lift design optimization to
demonstrateits capabilitynot only to delay stall phenomenabut also
to improve maximum lift performance.

In determining the search direction, the gradients of design
variables were traditionally calculated by the � nite difference
method. It is, however, too expensive to compute the � ow� eld
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iteratively with incremented values of a design variable for com-
plex two-dimensional or three-dimensional problems. In addition,
this method is so sensitive to the step size of a design variable that
it sometimes provides inaccurate signs or sensitivity derivatives.4;5

Therefore, more robust techniqueshave been proposed using direct
differentiation methods and adjoint variable methods.4¡13 Direct
differentiation methods provide computed derivatives, which are
coincident with � nite differenced derivatives, and are useful when
the number of design variable is smaller than that of the objec-
tive function and constraints. On the other hand, adjoint variable
methods are more advantageous for their capability to compute the
gradientsof the objective functionand constraintswhen the number
of design variable is much larger than that of the objective function
and constraints. Adjoint variable methods adopt the formulation of
the gradient in either a discrete or a continuous approach. In the
discrete approach, which is used in the present work, discretized
governing equations are differentiated with respect to design vari-
ables, whereas adjoint equations are � rst differentiated and then
discretized in the continuous approach.10;11

It is required to incorporate the effect of turbulenceas accurately
as possible in differentiating the governing equations to deal with
critical � ows involving strong shocks and � ow separations, such
as transonic � ows with a strong shock and high-angle-of-attack
� ows close to stall. It is, however,dif� cult to fully hand differentiate
the governingequations including the viscous terms and turbulence
terms.Some softwaretoolssuch as automaticdifferentiation8;9;12 are
usedfor the Navier–Stokesequationswith a turbulencemodel.How-
ever, this approach is generally less ef� cient, in terms of computing
time and memory overhead, than hand-differentiationcodes.8;13 In
the present work the Navier–Stokes equations coupled with two-
equation turbulencemodels are fully differentiatedby human hand.
Because the k ¡ ! supersonic transport (SST) model14;15 shows a
better prediction for stall phenomena among popular two-equation
turbulence models, the k ¡ ! SST model is mainly used and then
compared with the original k ¡ ! model16;17 and the standard k ¡ "
model.15 Like the mean � ow equations, the turbulencemodel equa-
tions are also hand differentiated to compute accurately the sensi-
tivity derivativesof � ow quantitieswith respect to design variables.

Adjoint variable methods with a usual assumption of constant
turbulent eddy-viscosity assumption have been applied to actual
aerodynamicdesign optimizations.10;11 Also the accuracyof this as-
sumption was reported in Refs. 4 and 5. An aerodynamicsensitivity
analysisfor the Navier–Stokes equationscoupledwith two-equation
turbulence models was performed on the chimera overlaid grids in
Ref. 5, which presents the effects of the constant eddy viscosity
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assumptionon sensitivitygradientswith respectto severalgeometric
and � ow design variables. In the present study all of the design vari-
ables that are actually imposedon designoptimizationare examined
using the CSAAV2D code.5 In addition,both transonicand high-lift
design optimizations using the constant eddy-viscosityassumption
are rigorouslyassessed in terms of designaccuracy,computermem-
ory requirements,and total design time in variousdesign examples:
subsonic and transonic designs for drag minimization and lift max-
imization and high-lift designs for lift-to-drag-ratio maximization
and even Clmax improvement. Especially in the high-lift design op-
timization, for the accurate computationof the � ow at higher angles
of attack very close to stall both � ow analysis and sensitivity anal-
ysis are performed in an unsteady, time-accuratemode by adopting
the dual time-stepping method.

Numerical Background
Flow Analysis

The compressible � ow analysis Navier–Stokes solver
(CFANS2D), which has been well veri� ed in many applica-
tions,1;5;18 is used for the computation of turbulent viscous � ows
over single- and multi-elementairfoils.The governingequationsare
the two-dimensional, unsteady, compressible Navier–Stokes equa-
tions coupled with two-equation turbulence models: the k ¡ ! SST
model,14;15 the k ¡ ! model,16;17 and the standard k ¡ " model.15

The governingequationsare transformedin generalizedcoordinates
and are solvedwith a � nite volumemethod.Using a backward Euler
implicit method and the dual time-stepping method, the governing
equations are discretized in time and linearized in delta form as

I
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where J is the Jacobian of transformation, ¿ and superscript m
represent pseudotime while t and n for physical time. Rs and S are
the residual of the steady-state� ow equationsand unsteady source-
like term, respectively. Q is the six-element vector of conservative
variables .½; ½u; ½v; ½ E; ½k; ½!/T .

For the calculation of the residual, convective terms are upwind
differencedbasedonRoe’s � ux-difference-splitting(FDS) scheme19

and viscous terms are central-differenced. A MUSCL (monotone
upstream-centeredscheme for conservationlaws) approach using a
third-order interpolation is used to obtain a higher order of spatial
accuracy.20 The third order of spatial accuracy is kept in all calcula-
tions. For a temporal integration the LU-SGS scheme by Yoon and
Colleagues21;22 is adopted to ef� ciently solve Eq. (1). Wall bound-
ary conditions are applied explicitlywith the nonslip condition.For
in� ow and out� ow boundaries characteristic conditions based on
one-dimensionalRiemann invariants are imposed. For the chimera
grid scheme a bilinear interpolationthat was known to be robust and
easy to implement is adopted for the hole-cutting boundary.1;18

Unsteady Sensitivity Analysis
In this section an unsteady sensitivity analysis method based on

an unsteady, time-accurate � ow analysis is presented. The discrete
residual of the unsteady � ow equations derived in Eq. (1) can be
written as

fRg D fRsg C fSg D RfQ; X; Dg D f0g (2)

where X is the computational grid position and D is the vector of
design variables. Similarly, the vector of the aerodynamicobjective
function F to be either minimized or maximized is also dependent
on Q; X, and D as

fFg D fF .Q; X; D/g (3)

Sensitivity derivatives of the aerodynamic functions are calcu-
lated by directly differentiating Eqs. (2) and (3) with respect to D
as
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In the adjoint-variable(AV) method the sensitivity derivativesof
the aerodynamic functions are obtained by combining Eqs. (4) and
(5) as
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where ¤ represents the six-element adjoint vector of Lagrangian
multipliers .¸1; ¸2; ¸3; ¸4; ¸5; ¸6/T corresponding to the conserva-
tive variables .½; ½u; ½v; ½E ; ½k; ½!/T . The geometric sensitiv-
ity vector fdX=dDg can be calculated by differentiating the grid-
generationcode. In the presentwork � nite differenceapproximation
is applied for simplicity. Rearranging Eq. (6) yields the following
equation:
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Without evaluating the vector fdQ=dDg, the sensitivity derivatives
of the aerodynamic functions can be calculated as
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if and only if the arbitrary vector ¤ satis� es the following adjoint
equation:
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To obtain the solution vector ¤ in Eq. (9), the backward Euler
implicit method with pseudotime marching is used as
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For ef� cient calculation of [@Rs=@Q]T , the residual vector
[@Rs=@Q]T is differentiated by the primitive variable vector Qp D
.½; u; v; w; p; k; !/T rather thanby the conservativevariablevector
Q. Introducing the transformation matrix M D @Q=@Qp , the trans-
posed � ux Jacobian can be calculated by
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The inverse transformationmatrix in transposed form is given as

M¡1T D
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.° ¡ 1/fu2 C v2g

2
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(12)

For steady-statecomputationsunsteady time terms in the preced-
ing equations can be vanished by setting the physical time step 1t
to in� nity. Boundary conditions in the AV methods are given from
Eq. (9) as
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where subscript B represents boundary cells.
For the chimera grid scheme a bilinear interpolation is adopted

for the hole-cuttingboundary.These boundary conditionsalso need
to be carefully treated. The discrete residuals at the fringe cells of
the main grid and the subgrid can be written as
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where the subscript F represents fringe cells and the superscripts
M and S represent the main grid and subgrid domain, respectively.
Then the equations for boundary conditions at fringe cells can be
derived from the Eqs. (9) and (14) as
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In the step of an unsteady sensitivity analysis, the main dif� -
culty lies in the differentiationof a one- or two-equation turbulence
model because of complicated terms such as turbulence produc-
tion and dissipation terms. To reduce the effort to differentiate the
turbulence transport equations, the turbulent eddy viscosity ¹T is
usually assumed to be constant in the adjoint variable methods.10;11

That is, the derivatives of ¹T with respect to the conservativevari-
ables Q are set to zero. Because d¹T =dQ is a very large banded
matrix of six conservativevariables at eight node cells as shown in
Fig. 1, it requires quite an amount of computer memory. The con-
stant eddy-viscosity assumption saves computing time as well as
memory overhead by avoiding the need to solve the differentiated
turbulenceequations.This assumption, however, might not guaran-
tee the required accuracy of the derivatives because it neglects the
contributionof the turbulence model to the � ow analysis,4;5 which
can directly in� uence on the design of optimal aerodynamic shape.

Fig. 1 Grid cells required for d¹T /dQ calculation.

Fig. 2 Surface-pressure coef� cients over the RAE 2822 airfoil at
® = 2.79 deg, M = 0.73, and Re = 6.5 ££ 106.

Results and Discussion
Flow Analysis

Both single- and multi-element airfoils are tested for the vali-
dation of the parallelized CFANS2D � ow solver.1 For the case of
single airfoil, the transonic � ow over the Royal Aircraft Establish-
ment (RAE) 2822 airfoil is computed at a Mach number of 0.73, a
Reynolds number of 6:5 £ 106, and an angle of attack 2.79 deg. A
129£ 65 hyperbolic grid is used with the wall spacing of 1 £ 10¡5

chord. The computed surface pressure coef� cients from the � ow
solver using the k ¡ ! SST model14;15 are compared with those
from the k ¡ ! model,16;17 the standard k ¡ " model,15 and the ex-
perimental data23 in Fig. 2.

In case of multi-element airfoil, the � ow over the National
AerospaceLaboratory (NLR) 7301 airfoilwith a 32%c � ap is tested
at a Mach number of 0.185, a Reynolds number of 2:51 £ 106 , and
an angle of attack of 13.1 deg. The � ap is positioned with a de� ec-
tion angle of 20 deg, an overhang of 5.3%c, and a gap of 2.6%c.
A 249£81 hyperbolic grid for the basic airfoil and a 125 £ 41 grid
for the � ap are used with the wall spacing on the order of 10¡6

chord in a chimera overlaidgrid system. For accurateprediction for
higher angles of attack over 13.1 deg, computations are performed
in a time-accurate, unsteady manner using the dual time-stepping
method as already veri� ed in the previous study.1 The computed
surface-pressurecoef� cients using two-equationturbulencemodels
are compared with the experimental data24 in Fig. 3. Three com-
puted results from different turbulence models show quite a good
agreement with experiments. Figure 4 shows lift coef� cients at the
wide range of angles of attack from zero to maximum lift. Over-
all, the computed result using the k ¡ ! SST model yields slightly
higherpredictionsof lift coef� cient.Especially, the capabilityof the
present � ow solver to predict the stall angle of 14.1 deg precisely is
noted, which is crucial in � nding Clmax during the actual high-lift
design optimization.
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Fig. 3 Surface-pressure coef� cients over the NLR 7301 airfoil with
� ap at ® = 13.1 deg, M = 0.185, and Re = 2.51££ 106 .

Fig. 4 Lift coef� cient vs angle of attack for the NLR 7301 airfoil with
� ap.

Effects on Sensitivity Analysis
To examine the effectsof constanteddy viscosity (CEV) assump-

tion more closely than the previous study,5 all of the sensitivitygra-
dients of design variables computed from the CEV assumption are
compared with those from the variable eddy viscosity (VEV) as-
sumption for three different � ow regimes: subsonic and transonic
turbulent � ows over the RAE 2822 airfoil and a low-speed turbu-
lent � ow over the NLR 7301 with � ap at a high angle of attack
close to stall angle. In addition, sensitivitygradients of an objective
function with respect to design variables computed from the k ¡ !
SST model are compared with those from the k ¡ ! model and the
standard k ¡ " model to study the effects of turbulencemodel under
the CEV assumption.

Transonic Airfoil with a Strong Shock
To examine the effectsof shockdiscontinuityon sensitivitygradi-

ents, the RAE 2822 transonic airfoil is tested at a Reynolds number
of 6:5 £ 106, an angle of attack of 2.79 deg, and a freestreamMach
number of 0.73, where a strong shock wave appears on the upper
airfoil surface. The objective is to maximize lift coef� cient. Angle
of attack ® is given as a � ow design variable, and 20 geometric
design variables are also given on both the upper and lower airfoil
surfaces using 10 Hicks–Henne functions,25 respectively. Figure 5
showsclearlythat theCEV assumptioncan lead to seriousdeviations
in obtaining the sensitivity gradients of lift coef� cient in turbulent
� ows involving a strong shock. For the design variable of angle of
attack, the deviationreachesup to about50%, and the maximum de-
viation is as much as 250% for geometric design variables.Because
the gradient of � ow quantities on the upper airfoil surface is much
larger than the lower surface, the CEV assumption shows quite a

Fig. 5 Convergence of sensitivity gradients of lift coef� cient at
M = 0.73: k ¡¡ ! SST model.

Fig. 6 Sensitivity gradients of lift coef� cient at M = 0.73: k ¡¡ " model.

Fig. 7 Sensitivity gradients of lift coef� cient at M = 0.73: k ¡¡ ! model.

differencemostly on the upper surface.The thirdorderof magnitude
of the initial residual is enough for the convergence criteria in both
the AV codes with/without the CEV assumption. However, for the
purposeof carefulcomparison,the convergencecriterionis set to the
fourth order of magnitudeof the initial residual in all computations.

Effects of Turbulence Models
Three different two-equation turbulence models are tested to ex-

amine the effects of turbulence models on sensitivity gradients.
Much like the k ¡ ! SST model, the standard k ¡ " and the k ¡ !
model also show a similar behavior in predicting sensitivity gradi-
ents as shown in Figs. 6 and 7. It is known that the CEV assumption
might yield inaccurate sensitivity gradients because it neglects the
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very large value of the turbulent eddy-viscosity derivative, espe-
cially in the downstream adverse pressure gradient region after the
shock wave, which directly affects the variation of aerodynamic
load coef� cients.4;5 However, this issue on the CEV assumption is
still considered moot in actual design applications.

Subsonic Turbulent Airfoil
In this case the RAE 2822 airfoil is tested again at a freestream

Mach number of 0.63, a Reynolds number of 6:5 £ 106, and an
angle of attack of 2.79 deg, where a strong shock does not appear
on the airfoil surface. The objective is to maximize lift to drag ratio
Cl=Cd . Sensitivity gradients with the CEV assumption show a little
differencefrom thecompleteAV codeofVEV assumption,as shown
in Fig. 8. For geometric design variables the maximum deviationof
51% occurs near suction peak on the upper surface, whereas the
deviation is less than 2% for the design variable of angle of attack.
Contrary to the transoniccase involvinga strong shock, the AV code
with the CEV assumption shows very mild deviations.

Multi-Element Airfoil Close to Stall
To demonstrate the capability of the AV code to treat com-

plex geometry, the � ow over the NLR 7301 airfoil with a 32%c
� ap is tested on a chimera overlaid grid at a Mach number of
0.185, a Reynolds number of 2:51£ 106 , and an angle of attack of
13.1 deg, which is very close to the stall angle of 14.1 deg. As men-
tioned earlier, the � ow information is previously obtained from un-
steady computationsin a time-accuratemanner using the dual time-
stepping method. Sensitivity gradients of lift coef� cient with
respect to angle of attack and geometric changes of the main airfoil
and � ap are compared in Fig. 9. For the design variable of angle of
attack, the deviation is 40%, and the maximum deviations reach up

Fig. 8 Sensitivity gradients of lift to drag ratio at M = 0.63: k ¡¡ ! SST
model.

Fig. 9 Sensitivity gradients of lift coef� cient at M = 0.185: NLR 7301
airfoil with � ap.

Table 1 Comparison of computing time
and memory requirement

Design VEV CEV

Single
CPU time 1.0 0.61
Memory 1.0 0.36

Multi
CPU time 1.0 0.57
Memory 1.0 0.35

Fig. 10 Comparison of convergence histories.

to 43 and 20% on the upper surfaces of the main airfoil and � ap,
respectively.

Computing Time and Memory Requirements
The convergenceproperty of the AV code with the VEV assump-

tion is roughly the same as that of the AV code with the CEV as-
sumption as shown in Fig. 10. Even though residual histories are
shown up to over seventh order of magnitude of the initial residual,
the third or fourth order of magnitude is enough for the convergence
criterion of sensitivity analysis in actual design examples. Comput-
ing time and memory requirements of the AV code with the CEV
assumption are compared to those of the AV code with the VEV
assumption in Table 1. The CEV assumption reduces the CPU time
and computer memory overheads by about 40 and 65%, respec-
tively. In an engineering sense it would be considerably ef� cient to
implement this assumption into actual design optimizationif design
results are acceptable, which will be examined in the next design
examples.

Effects on Transonic Design Optimization
The two-dimensional compressible � ow analysis Navier–Stokes

(CFANS2D) solver1 and two-dimensional compressible sensitivity
analysis adjoint variables (CSAAV2D) code5 are used for single
airfoil design optimization according to the design procedure in
Fig. 11. Optimization is performed using the Broydon–Fletcher–
Goldfarb–Shanno (BFGS) variable metric method supportedby the
Design Optimization Tool (DOT) commercial software.26 Twenty
geometric design variables are given on the upper and lower airfoil
surfaces.

To examine the effects of the CEV assumption on shock dis-
continuity, the RAE 2822 transonic airfoil is chosen as a baseline
model and tested at two different Mach numbers of 0.73 and 0.63,
respectively with/without a strong shock wave. In all design exam-
ples convergencecriteria for the � ow solver and sensitivity analysis
code are set to the fourth and third order of magnitude of the initial
residual, respectively.
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Fig. 11 Flowchart of a gradient-based design optimization.

Fig. 12 Drag minimization with lift constraint for single airfoil at
M = 0.73.

Drag Minimization with Lift Constraint
The RAE 2822 transonic airfoil is adopted as a baseline model

and redesigned at a Mach number of 0.73, a Reynolds number of
6:5 £ 106 , and a � xed angle of attack of 2.79 deg. The objective of
the � rst example is to minimize drag coef� cient with lift constraint.
To performthe sensitivityanalysisto obtain lift and drag coef� cients
simultaneously, the objective function to be minimized is given by
the following equation:

F D Cd C ! £ max.Cl ¡ Cl0; 0:0/ (16)

where Cl0 is the target lift coef� cient and ! is a weighting value.
The initial and designed surface pressure coef� cients are compared
in Fig. 12. After 14 design iterations the drag coef� cient is re-
duced from 0.01876 to 0.01341 keeping the target lift coef� cient
at a threshold value of 0.8 as shown in Fig. 13. Even though it
might be de� ned arbitrarily by a designer’s choice, the same de-
sign convergence criterion is imposed fairly on both the VEV and
CEV design examples. The VEV design case calls the � ow solver

Fig. 13 Design progress of drag minimization with lift constraint at
M = 0.73.

Fig. 14 Sensitivity gradients for drag minimization with lift
constraint.

66 times and the sensitivity analysis code 14 times, whereas the
CEV design case calls the � ow solver 117 times and the sensitivity
analysis code 27 times. The CEV design case requires much more
design iterations because of the accuracy problem in determining a
search direction.However, recalling that the AV code with the CEV
assumption yields quite a difference in determininggradients of lift
coef� cient from the AV code with the VEV assumption as already
seen in Fig. 5, it is interesting that the designed drag coef� cient
using the CEV assumption yields just 2% higher value than that of
the VEV design case. This can be explained by the facts that the
gradients of the drag coef� cient computed from the CEV assump-
tion produce a relatively smaller deviations compared to the case
of the lift coef� cient as shown in Figs. 5 and 14 and that a shock
wave representing nonlinearity in transonic � ows has disappeared
after the seconddesign iteration.The shock wave causingwave drag
on the initial airfoil is disappeared on the � nal designed airfoil as
shown in Fig. 15.

Shock-Wave Clearance
The effects of the CEV assumption on subsonic design with-

out a shock wave are examined by analyzing the � ows around the
RAE 2822 airfoil as a baseline airfoil at a Mach number of 0.63,
a Reynolds number of 6:5 £ 106, and a � xed angle of attack of
2.79 deg. The objective is to maximize the lift-to-drag ratio, which
is simply given by

F D Cl=Cd (17)

The designed surface-pressure coef� cients and design progress
are shown in Figs. 16 and 17. The VEV design improves the lift-to-
drag ratio from 57.22 to 64.73 after three design iterations, calling
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a) Initial airfoil

b) Design airfoil

Fig. 15 Comparison of isopressure contours before and after design.

Fig. 16 Lift-to-drag maximization for single airfoil at M = 0.63.

the � ow solver21 timesand the sensitivityanalysiscode three times.
On the other hand, the CEV design ends only after two design it-
erations with no further advance. Though the CEV design yields
some difference in the distribution of upper surface-pressurecoef-
� cients, which is expected from the result of sensitivity gradients
of lift to drag ratio in Fig. 10, the optimal value of the objective
function agrees well with each other. Thus, it seems to be feasible
to apply the CEV assumption to subsonic design optimization at a
lower angle of attack.

Fig. 17 Design progress of lift-to-drag maximizationat M = 0.63.

Fig. 18 Improvement of Clmax for multi-element airfoil.

Effects on High-Lift Design Optimization
The essence of high-lift design optimization is undoubtedly to

improve Clmax by modifying geometric parameterson each element
and by changing the angle of attack as well. In actual high-lift de-
sign applications the enhancement of the maximum lift coef� cient
can cause undesirable lift-to-drag ratios at off-designconditions.In
the present study, however, high-lift design examples are restricted
to the optimal landing and takeoff con� guration at high angles of
attack close to the stall angle. For further realistic high-lift design
optimizationmultipointdesign optimizationwould be performedas
a future work.

To validate the present design topology based on unsteady sen-
sitivity analysis and chimera overset grid scheme, the NLR 7301
airfoil with � ap is tested as a baseline model at a Mach number of
0.185, a Reynolds number of 2:51 £ 106 , and an angle of attack of
13.1 deg. Among total 44 design variables,a � ow design variableof
angleof attack and 43 geometric variablesare given: 20 design vari-
ables on the surfaces of the basic airfoil and � ap, respectively, and
three geometric changes of � ap de� ection angle, overlap, and gap.
For the accurate prediction of the � ow� eld very close to stall dur-
ing the one-dimensional search, � ow computations are performed
in a time-accurate, unsteady manner using the dual time-stepping
method. The effects of the CEV assumption on the multi-element
airfoildesignoptimizationare examinedin bothcasesof landingand
takeoffcon� gurationsat higher anglesof attacksclose to stall angle.

Maximum-Lift Landing Con�guration
The objective of the � rst example is to maximize the lift coef� -

cient at the � oating angle of attack. Thus, the angle of attack is also
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Fig. 19 Design progress of Clmax improvement for multi-element
airfoil.

a) Massively separated � ow during design

b) Attached � ow after design

Fig. 20 Comparison of streamlines over high-lift airfoil with � ap.

included as a design variable. The objective function to be maxi-
mized is givenby Eq. (17).The initial and designedsurface-pressure
coef� cients are compared in Fig. 18. For the design case using the
AV code with the VEV assumption, the angle of attack is changed
from13.1 to 14.17deg,whereasit ischangedto 14.03deg in theCEV
design case. Figure 19 shows that the lift coef� cients increase from
3.2982 to 3.8399 in the VEV design case and to 3.8171 in the CEV
design, respectively.The VEV design calls the � ow solver 29 times
and the sensitivityanalysiscode four times,whereas theCEV design
calls the � ow solver 43 times and the sensitivityanalysis code seven
times. For a fair comparison the same design convergencecriterion
is implicitly imposed on both the VEV and CEV design examples.
Even though the CEV design requires more design iterations than
the VEV design because of the inaccurate information of search
direction from the CEV assumption, the designed results show
pretty much same con� gurations in an engineeringsense. Figure 20
shows an improvement of Clmax by avoiding a massive-separated
� ow over a high-lift airfoil using the present design optimization
tool.

Takeoff Con�guration
The objective of the second example is to maximize the lift-to-

drag ratio at a � xed angle of attack of 13.1 deg, where the objective
function to be maximized is the lift to drag ratio itself as given in
Eq. (17). The distribution of initial and designed surface-pressure
coef� cients is shown in Fig. 21. After two design iterations the
lift-to-drag ratio from the VEV design is increased from 42.35 to
48.39 as in Fig. 22. Likewise, the CEV design shows an improved
lift-to-dragratio of 48.23. Because the initial geometry is originally
optimizedfor takeoffcon� guration,a noticeableimprovementis not

Table 2 Comparison of total design optimization time

Airfoil Design Flow solver AV code Total

Single VEV 66 £ 1.0 14 £ 4.8 133.2
CEV 117£ 1.0 27 £ 2.9 195.3

Multi VEV 29 £ 1.0 4 £ 2.0 37.0
CEV 43 £ 1.0 7 £ 1.2 51.4

Fig. 21 Lift-to-drag maximization for multi-element airfoil.

Fig. 22 Design progressof lift-to-dragmaximizationfor multi-element
airfoil.

obtained. The high-lift design with the VEV assumption calls � ow
solver 17 times and sensitivity analysis code two times, whereas the
CEV design calls � ow solver 29 times and sensitivity analysis code
four times.

Total Design Optimization Time
With the same convergencecriteria for the � ow solver and sensi-

tivity analysiscode, total computationalcost fordesignoptimization
with the CEV assumptionis comparedto the case of the VEV design
by the unit of a � ow solver running time as in Table 2. In case of
transonic design with a strong shock, the AV code with the VEV
assumption takes 4.8 times more than the � ow solver, whereas the
AV code with the CEV assumption requires 2.9 times. For the drag
minimization of a transonic airfoil with the AV code with the VEV
assumption, there are 66 � ow solver calls and 14 sensitivity code
calls, which corresponds to 133 � ow solver calls in total. In case
of the CEV design, total 195 � ow solver calls are required, which
results in 45% increase in net computational cost compared to the
VEV design case.
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In high-lift optimization with the VEV assumption for the Clmax

improvement, there are 29 � ow solver calls and four AV code calls,
which corresponds to total 37 � ow solver calls. Much like the tran-
sonic design, the high-lift design with the CEV assumption requires
about 40% more computing time than the VEV design case. The
increase of total computing time in the CEV design is mainly at-
tributed to inaccuracy in determining search direction.

Despite extra computationalcost, it seams to be feasible to apply
the CEV assumption to actual design applications in general be-
cause the design examples using this assumption essentially show
comparable results to those of the VEV design.

Conclusions
The effects of a usual assumption of constant turbulent eddy vis-

cosity in an adjoint method on aerodynamic design are carefully
investigatedin the presentstudy.Accurate steady and unsteady� ow
analyses are followed by the aerodynamic sensitivity analysis for
the Navier–Stokes equations coupled with two-equation turbulence
models. For high-lift design optimization at higher angles of attack
close to stall, both the � ow analysis and sensitivity analysis are
performed in an unsteady mode by adopting a dual time-stepping
method. The present design tool composed of the unsteady � ow
solver and the unsteady sensitivity analysis code demonstrates its
competencyfor high-lift design optimization.Through the sensitiv-
ity analyses before the actual design process, it is noticed that the
CEV assumption can cause inaccurategradients in the design of the
transonic airfoil with a strong shock wave and the multi-element
airfoil at a higher angle of attack close to stall. However, the CEV
design generally shows a minor difference in obtaining an optimal
value of the objective function compared with the VEV design.
Therefore, it seems to be feasible to apply this assumption to actual
design applications, even to critical problems such as the transonic
design with a strong shock wave and the high-lift design at high
angles of attack.
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